263 research outputs found

    The past and present of serum aminotransferases and the future of liver injury biomarkers

    Get PDF
    Laboratory testing is important in the diagnosis and monitoring of liver injury and disease. Current liver tests include plasma markers of injury (e.g. aminotransferases, γ-glutamyl transferase, and alkaline phosphatase), markers of function (e.g. prothrombin time, bilirubin), viral hepatitis serologies, and markers of proliferation (e.g. α- fetoprotein). Among the injury markers, the alanine and aspartate aminotransferases (ALT and AST, respectively) are the most commonly used. However, interpretation of ALT and AST plasma levels can be complicated. Furthermore, both have poor prognostic utility in acute liver injury and liver failure. New biomarkers of liver injury are rapidly being developed, and the US Food and Drug Administration the European Medicines Agency have recently expressed support for use of some of these biomarkers in drug trials. The purpose of this paper is to review the history of liver biomarkers, to summarize mechanisms and interpretation of ALT and AST elevation in plasma in liver injury (particularly acute liver injury), and to discuss emerging liver injury biomarkers that may complement or even replace ALT and AST in the future

    Professionalism in residency training: A compilation of desirable behaviors and a case-based comparison between pathologists in training and practice

    Get PDF
    Professionalism is one of the most important competencies for physicians but is also the most difficult to teach, assess, and manage. To better understand professionalism in pathology, we surveyed practicing pathologists and pathology residents and fellows in training. We identified 12 key desirable attributes of professionalism. In addition, 8 case scenarios highlighting unprofessional behavior were presented, and results between pathologists in practice and in training were compared. No significant differences between attending pathologists and residents were identified in how these cases should be managed. Our study demonstrated remarkable concordance between practicing pathologists and residents as to what constitutes professionalism and how to manage unprofessional behavior. Our case-based approach can be a useful technique to teach professionalism to both pathologists in practice and in training

    Safety and molecular-toxicological implications of cannabidiol-rich cannabis extract and methylsulfonylmethane co-administration

    Get PDF
    © 2020 by the authors. Cannabidiol (CBD) is a biologically active, non-psychotropic component of Cannabis sativa whose popularity has grown exponentially in recent years. Besides a wealth of potential health benefits, ingestion of CBD poses risks for a number of side effects, of which hepatotoxicity and CBD/herb-drug interactions are of particular concern. Here, we investigated the interaction potential between the cannabidiol-rich cannabis extract (CRCE) and methylsulfonylmethane (MSM), a popular dietary supplement, in the mouse model. For this purpose, 8-week-old male C57BL6/J mice received MSM-containing water (80 mg/100 mL) ad libitum for 17 days. During the last three days of treatment, mice received three doses of CRCE administered in sesame oil via oral gavage (123 mg/kg/day). Administration of MSM alone did not result in any evidence of liver toxicity and did not induce expression of mouse cytochrome P450 (CYP) enzymes. Administration of CRCE did produce significant (p \u3c 0.05) increases in Cyp1a2, Cyp2b10, Cyp2c29, Cyp3a4, Cyp3a11, Cyp2c65, and Cyp2c66 messenger RNA, however, this effect was not amplified by MSM/CRCE cotreatment. Similarly, no evidence of liver toxicity was observed in MSM/CRCE dosed mice. In conclusion, short-term MSM/CRCE co-administration did not demonstrate any evidence of hepatotoxicity in the mouse model

    Hepatotoxicity of a Cannabidiol-rich cannabis extract in the mouse model

    Get PDF
    © 2019 Xide Ye et al. Gastrodia elata Blume belongs to the Orchidaceae family. G. elata is often processed when used in traditional Chinese medicine (TCM). In the current study, a traditional processing method, known as Jianchang Bang, was applied. Steamed and dried (S&D) G. elata was processed with ginger juice for up to 5 days (GEP5D). An UHPLC-MS/MS combined with a chemometric method was developed for the analysis of processed G. elata along with the raw material as well as steamed and dried G. elata. As a result, the primary marker compounds were identified with the aid of TOF-MS and MS/MS analyses. Compared with the raw material of G. elata with GEP5D, three new parishin-type compounds were identified according to their retention time, accurate mass, and fragmentation patterns. The chromatographic peak areas for marker compounds, including S-(gastrodin)-glutathione, S-(4-hydroxybenzylamine)-glutathione, and parishin-type compounds, changed significantly. This result indicated that by applying the Jianchang Bang method, changes in chemical composition in G. elata contents were observed. The study also demonstrated that chemometric analysis is helpful in understanding the processing mechanism and will provide scientific support for the clinical application of G. elata

    Decaffeinated green tea extract does not elicit hepatotoxic effects and modulates the gut microbiome in lean B6C3F\u3csub\u3e1\u3c/sub\u3e mice

    Get PDF
    © 2019 The Author(s) The aim of this study is the development of validated HPTLC method for the quantification of vitexin from Passiflora foetida commercial herbal formulations. The developed method was validated, in accordance with ICH guidelines for precision, accuracy, specificity and robustness. The plate was developed using ethyl acetate:methanol:water:formic acid 30:4:2:1(%, v/v/v/v) on 20 × 10 cm glass coated silica gel 60 F254 plates and the developed plate was scanned and quantified densitometrically at λ = 340 nm. Linear regression analysis revealed a good linear relationship between peak area and amount of vitexin in the range of 100–700 ng/spot. The amount of vitexin in nine commercial herbal formulations was successfully quantified by the developed HPTLC method. The developed and validated high performance thin layer chromatographic method offers a new sensitive and reliable tool for quantification of vitexinin in various herbal formulations containing Passiflora foetida

    A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen

    No full text
    International audienceObesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicit

    Paradoxical patterns of sinusoidal obstruction syndrome-like liver injury in aged female CD-1 mice triggered by cannabidiol-rich cannabis extract and acetaminophen co-administration

    Get PDF
    © 2019 The Authors. Environmental Toxicology published by Wiley Periodicals, Inc. Exposure to environmental contaminants and consumption of a high, saturated fatty diet has been demonstrated to promote precursors for metabolic syndrome (hyperglycemia, hyperinsulinemia, and hypertriglyceridemia). The purpose of this study was to determine if exposure to the most prevalent environmental persistent organic pollutants (POPs) would act as causative agents to promote metabolic syndrome independent of dietary intake. We hypothesized that POPs will activate the advanced glycated end-product (AGE)-and receptor for AGE (RAGE) signaling cascade to promote downstream signaling modulators of cardiovascular remodeling and oxidative stress in the heart. At 5-weeks of age nondiabetic (WT) and diabetic (ob/ob) mice were exposed POPs mixtures by oral gavage twice a week for 6-weeks. At the end of 6-weeks, animals were sacrificed and the hearts were taken for biochemical analysis. Increased activation of the AGE-RAGE signaling cascade via POPs exposure resulted in elevated levels of fibroblast differentiation (α-smooth muscle actin) and RAGE expression indicated maladaptive cardiac remodeling. Conversely, the observed decreased superoxide dismutase-1 and -2 (SOD-1 and SOD-2) expression may exacerbate the adverse changes occurring as a result of POPs treatment to reduce innate cardioprotective mechanisms. In comparison, ventricular collagen levels were decreased in mice exposed to POPs. In conclusion, exposure to organic environmental pollutants may intensify oxidative and inflammatory stressors to overwhelm protective mechanisms allowing for adverse cardiac remodeling

    Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination

    Get PDF
    Central memory T cells (Tcm) and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG) vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated). BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection), non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains) were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB
    corecore